578 research outputs found

    On small Mixed Pattern Ramsey numbers

    Full text link
    We call the minimum order of any complete graph so that for any coloring of the edges by kk colors it is impossible to avoid a monochromatic or rainbow triangle, a Mixed Ramsey number. For any graph HH with edges colored from the above set of kk colors, if we consider the condition of excluding HH in the above definition, we produce a \emph{Mixed Pattern Ramsey number}, denoted Mk(H)M_k(H). We determine this function in terms of kk for all colored 44-cycles and all colored 44-cliques. We also find bounds for Mk(H)M_k(H) when HH is a monochromatic odd cycles, or a star for sufficiently large kk. We state several open questions.Comment: 16 page

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio

    Fast spin exchange between two distant quantum dots

    Get PDF
    The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamental electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5 supplementary figure

    Efficient quantum state tomography

    Get PDF
    Quantum state tomography, the ability to deduce the state of a quantum system from measured data, is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes infeasible because the number of quantum measurements and the amount of computation required to process them grows exponentially in the system size. Here we show that we can do exponentially better than direct state tomography for a wide range of quantum states, in particular those that are well approximated by a matrix product state ansatz. We present two schemes for tomography in 1-D quantum systems and touch on generalizations. One scheme requires unitary operations on a constant number of subsystems, while the other requires only local measurements together with more elaborate post-processing. Both schemes rely only on a linear number of experimental operations and classical postprocessing that is polynomial in the system size. A further strength of the methods is that the accuracy of the reconstructed states can be rigorously certified without any a priori assumptions.Comment: 9 pages, 4 figures. Combines many of the results in arXiv:1002.3780, arXiv:1002.3839, and arXiv:1002.4632 into one unified expositio

    Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron

    Get PDF
    We investigate the spin of a multielectron GaAs quantum dot in a sequence of nine charge occupancies, by exchange coupling the multielectron dot to a neighboring two-electron double quantum dot. For all nine occupancies, we make use of a leakage spectroscopy technique to reconstruct the spectrum of spin states in the vicinity of the interdot charge transition between a single- and a multielectron quantum dot. In the same regime we also perform time-resolved measurements of coherent exchange oscillations between the single- and multielectron quantum dot. With these measurements, we identify distinct characteristics of the multielectron spin state, depending on whether the dot's occupancy is even or odd. For three out of four even occupancies we do not observe any exchange interaction with the single quantum dot, indicating a spin-0 ground state. For the one remaining even occupancy, we observe an exchange interaction that we associate with a spin-1 multielectron quantum dot ground state. For all five of the odd occupancies, we observe an exchange interaction associated with a spin-1/2 ground state. For three of these odd occupancies, we clearly demonstrate that the exchange interaction changes sign in the vicinity of the charge transition. For one of these, the exchange interaction is negative (i.e. triplet-preferring) beyond the interdot charge transition, consistent with the observed spin-1 for the next (even) occupancy. Our experimental results are interpreted through the use of a Hubbard model involving two orbitals of the multielectron quantum dot. Allowing for the spin correlation energy (i.e. including a term favoring Hund's rules) and different tunnel coupling to different orbitals, we qualitatively reproduce the measured exchange profiles for all occupancies.Comment: 20 pages, 13 figures, 2 table

    A Delphi study to strengthen research-methods training in undergraduate psychology programs

    Get PDF
    Psychology programs often emphasize inferential statistical tests over a solid understanding of data and research design. This imbalance may leave graduates underequipped to effectively interpret research and employ data to answer questions. We conducted a two-round modified Delphi to identify the research-methods skills that the UK psychology community deems essential for undergraduates to learn. Participants included 103 research-methods instructors, academics, students, and nonacademic psychologists. Of 78 items included in the consensus process, 34 reached consensus. We coupled these results with a qualitative analysis of 707 open-ended text responses to develop nine recommendations for organizations that accredit undergraduate psychology programs—such as the British Psychological Society. We recommend that accreditation standards emphasize (1) data skills, (2) research design, (3) descriptive statistics, (4) critical analysis, (5) qualitative methods, and (6) both parameter estimation and significance testing; as well as (7) give precedence to foundational skills, (8) promote transferable skills, and (9) create space in curricula to enable these recommendations. Our data and findings can inform modernized accreditation standards to include clearly defined, assessable, and widely encouraged skills that foster a competent graduate body for the contemporary world
    • …
    corecore